Search alternatives:
based optimization » whale optimization (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a while » a whole (Expand Search), a white (Expand Search)
based optimization » whale optimization (Expand Search)
while optimization » whale optimization (Expand Search), wolf optimization (Expand Search), phase optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data based » data used (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a while » a whole (Expand Search), a white (Expand Search)
-
61
-
62
-
63
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …”
-
64
-
65
An Example of a WPT-MEC Network.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
66
Related Work Summary.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
67
Simulation parameters.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
68
Training losses for N = 10.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
69
Normalized computation rate for N = 10.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
70
Summary of Notations Used in this paper.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
71
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
-
72
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…<div><p>An image classification algorithm based on adaptive feature weight updating is proposed to address the low classification accuracy of the current single-feature classification algorithms and simple multifeature fusion algorithms. …”
-
73
-
74
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
Published 2021“…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
-
75
-
76
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
77
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
78
Summary of literature review.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
79
Topic description.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
-
80
Notations along with their descriptions.
Published 2024“…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”