بدائل البحث:
codes optimization » codon optimization (توسيع البحث), model optimization (توسيع البحث), convex optimization (توسيع البحث)
work optimization » wolf optimization (توسيع البحث), swarm optimization (توسيع البحث), dose optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data codes » data code (توسيع البحث), data models (توسيع البحث), data model (توسيع البحث)
based work » based network (توسيع البحث)
codes optimization » codon optimization (توسيع البحث), model optimization (توسيع البحث), convex optimization (توسيع البحث)
work optimization » wolf optimization (توسيع البحث), swarm optimization (توسيع البحث), dose optimization (توسيع البحث)
library based » laboratory based (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data codes » data code (توسيع البحث), data models (توسيع البحث), data model (توسيع البحث)
based work » based network (توسيع البحث)
-
61
Image_3_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.jpeg
منشور في 2023"…Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …"
-
62
Table_4_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.xlsx
منشور في 2023"…Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …"
-
63
Table_2_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.xlsx
منشور في 2023"…Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …"
-
64
Table_1_G2P Provides an Integrative Environment for Multi-model genomic selection analysis to improve genotype-to-phenotype prediction.xlsx
منشور في 2023"…Based on the evaluation outcome, G2P performs auto-ensemble algorithms that not only can automatically select the most precise models but also can integrate prediction results from multiple models. …"
-
65
<b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043)
منشور في 2025"…The described extracted features were used to predict leaf betalain content (µg per FW) using multiple machine learning regression algorithms (Linear regression, Ridge regression, Gradient boosting, Decision tree, Random forest and Support vector machine) using the <i>Scikit-learn</i> 1.2.1 library in Python (v.3.10.1) (list of hyperparameters used is given in <a href="#sup1" target="_blank">Supplementary Data S5</a>). …"