Search alternatives:
codings optimization » codon optimization (Expand Search), joint optimization (Expand Search), routing optimization (Expand Search)
field optimization » lead optimization (Expand Search), guided optimization (Expand Search), linear optimization (Expand Search)
data codings » data recordings (Expand Search), data encoding (Expand Search), data codes (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data field » data file (Expand Search), dark field (Expand Search)
codings optimization » codon optimization (Expand Search), joint optimization (Expand Search), routing optimization (Expand Search)
field optimization » lead optimization (Expand Search), guided optimization (Expand Search), linear optimization (Expand Search)
data codings » data recordings (Expand Search), data encoding (Expand Search), data codes (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data field » data file (Expand Search), dark field (Expand Search)
-
1
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
2
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
3
-
4
-
5
-
6
-
7
Parameter settings of the comparison algorithms.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
8
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
9
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
10
Datasets and their properties.
Published 2023“…<div><p>Feature selection problem represents the field of study that requires approximate algorithms to identify discriminative and optimally combined features. …”
-
11
Parameter settings.
Published 2023“…<div><p>Feature selection problem represents the field of study that requires approximate algorithms to identify discriminative and optimally combined features. …”
-
12
-
13
-
14
-
15
Comparison in terms of the sensitivity.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
16
Parameter sensitivity of BIMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
17
Details of the medical datasets.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
18
The flowchart of IMGO.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
19
Comparison in terms of the selected features.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”
-
20
Iterative chart of control factor.
Published 2024“…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …”