Search alternatives:
utilization algorithm » initialization algorithm (Expand Search), optimization algorithms (Expand Search), maximization algorithm (Expand Search)
resource utilization » resource allocation (Expand Search)
de optimization » d optimization (Expand Search), dose optimization (Expand Search), yet optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
a resource » _ resource (Expand Search), _ resources (Expand Search), low resource (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
data de » data due (Expand Search)
utilization algorithm » initialization algorithm (Expand Search), optimization algorithms (Expand Search), maximization algorithm (Expand Search)
resource utilization » resource allocation (Expand Search)
de optimization » d optimization (Expand Search), dose optimization (Expand Search), yet optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
a resource » _ resource (Expand Search), _ resources (Expand Search), low resource (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
data de » data due (Expand Search)
-
1
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
2
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
3
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
4
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
5
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
6
-
7
-
8
-
9
Supplementary file 1_Encodings of the weighted MAX k-CUT problem on qubit systems.pdf
Published 2025“…This study explores encoding methods for MAX k-CUT on qubit systems by utilizing quantum approximate optimization algorithms (QAOA) and addressing the challenge of encoding integer values on quantum devices with binary variables. …”
-
10
-
11
Models and Dataset
Published 2025“…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …”
-
12
-
13
Data_Sheet_1_The impact of family urban integration on migrant worker mental health in China.docx
Published 2024“…</p>Methods<p>This paper uses multi-dimensional indexes to measure family urban integration, covering economic, social and psychological dimensions, which may consider the complexity of integration. Utilizing a machine learning clustering algorithm, the research endeavors to assess the level of urban integration experienced by migrant workers and their respective families. …”