يعرض 61 - 73 نتائج من 73 نتيجة بحث عن '(( binary data derived optimization algorithm ) OR ( binary based acid optimization algorithm ))*', وقت الاستعلام: 0.53s تنقيح النتائج
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67
  8. 68
  9. 69

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment حسب Jianfang Cao (1881379)

    منشور في 2019
    "…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …"
  10. 70
  11. 71

    Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction حسب Raul A. Flores (2910539)

    منشور في 2020
    "…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…"
  12. 72

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods حسب Jiacong Du (12035845)

    منشور في 2022
    "…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …"
  13. 73

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"