بدائل البحث:
derived optimization » driven optimization (توسيع البحث), required optimization (توسيع البحث), design optimization (توسيع البحث)
across optimization » cost optimization (توسيع البحث), stress optimization (توسيع البحث), process optimization (توسيع البحث)
data derived » data driven (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
derived optimization » driven optimization (توسيع البحث), required optimization (توسيع البحث), design optimization (توسيع البحث)
across optimization » cost optimization (توسيع البحث), stress optimization (توسيع البحث), process optimization (توسيع البحث)
data derived » data driven (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
<i>hi</i>PRS algorithm process flow.
منشور في 2023"…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …"
-
8
Flow diagram of the proposed model.
منشور في 2025"…Local Interpretable Model-agnostic Explanations (LIME) were applied to improve interpretability. Across all algorithm models, LR–ABC hybrids outperformed their baseline models (e.g., Random Forest: 85.2% → 91.36% accuracy). …"
-
9
-
10
Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level
منشور في 2021"…Our algorithm outperforms the nearest neighbor algorithm and is shown to produce matched samples with total distance no larger than twice the optimal distance. …"
-
11
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
منشور في 2022"…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …"
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20