Search alternatives:
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), design optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
data derived » data driven (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary dea » binary depot (Expand Search)
dea model » ideal model (Expand Search), data model (Expand Search), a model (Expand Search)
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), design optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
data derived » data driven (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary dea » binary depot (Expand Search)
dea model » ideal model (Expand Search), data model (Expand Search), a model (Expand Search)
-
1
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
Published 2025“…This algorithm conducts a series of procedures: (1) fragmentation of the molecules into functional groups from SMILES, (2) calculation of activity coefficients under predetermined temperature and mole fraction conditions by employing universal quasi-chemical functional group activity coefficient (UNIFAC) model, and (3) regression of NRTL model parameters by employing UNIFAC model simulation results in the differential evolution algorithm (DEA) and Nelder–Mead method (NMM). …”
-
2
-
3
<i>hi</i>PRS algorithm process flow.
Published 2023“…<b>(C)</b> The whole training data is then scanned, searching for these sequences and deriving a re-encoded dataset where interaction terms are binary features (i.e., 1 if sequence <i>i</i> is observed in <i>j</i>-th patient genotype, 0 otherwise). …”
-
4
-
5
Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes
Published 2022“…Our estimate of m is the maximizer of a marginal likelihood obtained by integrating the latent log-ORs out of the joint distribution of the parameters and observed data. We consider two approximate approaches to maximizing the marginal likelihood: (i) a Monte Carlo EM algorithm (MCEM) and (ii) a Laplace approximation (LA) to each integral, followed by derivative-free optimization of the approximation. …”
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20