Search alternatives:
features optimization » feature optimization (Expand Search), mixture optimization (Expand Search), resource optimization (Expand Search)
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), design optimization (Expand Search)
data derived » data driven (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
features optimization » feature optimization (Expand Search), mixture optimization (Expand Search), resource optimization (Expand Search)
derived optimization » driven optimization (Expand Search), required optimization (Expand Search), design optimization (Expand Search)
data derived » data driven (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
9
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
10
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
11
-
12
-
13
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
14
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
15
Memory storage behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
16
Elite search behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
17
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
S and V shaped transfer functions.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
19
S- and V-Type transfer function diagrams.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
20
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”