Showing 61 - 77 results of 77 for search '(( binary data derived optimization algorithm ) OR ( binary sample design optimization algorithm ))', query time: 0.48s Refine Results
  1. 61
  2. 62
  3. 63
  4. 64
  5. 65
  6. 66
  7. 67
  8. 68
  9. 69
  10. 70
  11. 71
  12. 72

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…This paper first proposes the QUBO-MCLP algorithm workflow and designs the Transformation Operator for Inequality Constraints Considering the Capacity of Accessible Providers (TOICCAP), which accounts for the scale of accessible supply points. …”
  13. 73

    Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment by Jianfang Cao (1881379)

    Published 2019
    “…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
  14. 74

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…The specific work is as follows: (1) design simulated driving experiment and real driving experiment, determine the fatigue state of drivers according to the binary Karolinska Sleepiness Scale (KSS), and establish the fatigue driving sample database. (2) Improved Multi-Task Cascaded Convolutional Networks (MTCNN) and applied to face detection. …”
  15. 75

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods by Jiacong Du (12035845)

    Published 2022
    “…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
  16. 76

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
  17. 77

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”