Search alternatives:
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
wave process » same process (Expand Search), whole process (Expand Search), phase process (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary wave » binary image (Expand Search)
process optimization » robust optimization (Expand Search), model optimization (Expand Search), policy optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
wave process » same process (Expand Search), whole process (Expand Search), phase process (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary wave » binary image (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
9
-
10
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
11
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
12
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
13
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
14
MCLP_quantum_annealer_V0.5
Published 2025“…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
-
15
IRBMO vs. variant comparison adaptation data.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
16
Pseudo Code of RBMO.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
17
P-value on CEC-2017(Dim = 30).
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
18
Memory storage behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
19
Elite search behavior.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”
-
20
Description of the datasets.
Published 2025“…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. …”