يعرض 1 - 20 نتائج من 82 نتيجة بحث عن '(( binary data driven optimization algorithm ) OR ( genes linked based optimization algorithm ))', وقت الاستعلام: 0.63s تنقيح النتائج
  1. 1
  2. 2

    Event-driven data flow processing. حسب Yixian Wen (12201388)

    منشور في 2025
    "…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Flow diagram of the proposed model. حسب Uğur Ejder (22683228)

    منشور في 2025
    "…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …"
  8. 8

    Inferring Gene Regulatory Networks Using the Improved Markov Blanket Discovery Algorithm حسب Interdis Sci Comp Life Sci (7335308)

    منشور في 2023
    "…<ul><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Wei-Liu-Aff1-Aff2" target="_blank">Wei Liu</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Yi-Jiang-Aff1" target="_blank">Yi Jiang</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Li-Peng-Aff3" target="_blank">Li Peng</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Xingen-Sun-Aff1" target="_blank">Xingen Sun</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Wenqing-Gan-Aff1" target="_blank">Wenqing Gan</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Qi-Zhao-Aff4" target="_blank">Qi Zhao</a>,</li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Huanrong-Tang-Aff1" target="_blank">Huanrong Tang</a></li></ul><p dir="ltr">A novel network inference method based on the improved MB discovery algorithm, IMBDANET, was proposed for improving gene regulatory networks. …"
  9. 9

    Inferring Gene Regulatory Networks Using the Improved Markov Blanket Discovery Algorithm حسب Interdis Sci Comp Life Sci (7335308)

    منشور في 2023
    "…<ul><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Wei-Liu-Aff1-Aff2" target="_blank">Wei Liu</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Yi-Jiang-Aff1" target="_blank">Yi Jiang</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Li-Peng-Aff3" target="_blank">Li Peng</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Xingen-Sun-Aff1" target="_blank">Xingen Sun</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Wenqing-Gan-Aff1" target="_blank">Wenqing Gan</a>, </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Qi-Zhao-Aff4" target="_blank">Qi Zhao</a> </li><li><a href="https://link.springer.com/article/10.1007/s12539-021-00478-9#auth-Huanrong-Tang-Aff1" target="_blank">Huanrong Tang</a></li></ul><p dir="ltr">A novel network inference method based on the improved MB discovery algorithm, IMBDANET, was proposed for improving gene regulatory networks. …"
  10. 10
  11. 11

    Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx حسب Çaǧlar Çaǧlayan (12253934)

    منشور في 2022
    "…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …"
  12. 12

    Table 1_Identification of a signature gene set for oxaliplatin sensitivity prediction in colorectal cancer.xlsx حسب Xiaopeng Zhan (4170574)

    منشور في 2025
    "…Machine learning algorithms to these datasets was applied to identify genes associated with oxaliplatin response. …"
  13. 13

    Image 1_Identification of a signature gene set for oxaliplatin sensitivity prediction in colorectal cancer.pdf حسب Xiaopeng Zhan (4170574)

    منشور في 2025
    "…Machine learning algorithms to these datasets was applied to identify genes associated with oxaliplatin response. …"
  14. 14

    Data Sheet 4_Identification of a signature gene set for oxaliplatin sensitivity prediction in colorectal cancer.pdf حسب Xiaopeng Zhan (4170574)

    منشور في 2025
    "…Machine learning algorithms to these datasets was applied to identify genes associated with oxaliplatin response. …"
  15. 15

    Data Sheet 1_Identification of a signature gene set for oxaliplatin sensitivity prediction in colorectal cancer.pdf حسب Xiaopeng Zhan (4170574)

    منشور في 2025
    "…Machine learning algorithms to these datasets was applied to identify genes associated with oxaliplatin response. …"
  16. 16

    Data Sheet 2_Identification of a signature gene set for oxaliplatin sensitivity prediction in colorectal cancer.pdf حسب Xiaopeng Zhan (4170574)

    منشور في 2025
    "…Machine learning algorithms to these datasets was applied to identify genes associated with oxaliplatin response. …"
  17. 17

    Data Sheet 3_Identification of a signature gene set for oxaliplatin sensitivity prediction in colorectal cancer.pdf حسب Xiaopeng Zhan (4170574)

    منشور في 2025
    "…Machine learning algorithms to these datasets was applied to identify genes associated with oxaliplatin response. …"
  18. 18
  19. 19

    Confusion matrix. حسب Yixian Wen (12201388)

    منشور في 2025
    "…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
  20. 20

    Parameter settings. حسب Yixian Wen (12201388)

    منشور في 2025
    "…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"