Search alternatives:
driven optimization » design optimization (Expand Search), process optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
data model » data models (Expand Search), data modeling (Expand Search)
driven optimization » design optimization (Expand Search), process optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), wolf optimization (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
data model » data models (Expand Search), data modeling (Expand Search)
-
1
-
2
-
3
-
4
-
5
Event-driven data flow processing.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
6
DATA.
Published 2025“…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …”
-
7
The robustness test results of the model.
Published 2025“…Finally, an improved RF model is constructed by optimizing the parameters of the RF algorithm. …”
-
8
-
9
-
10
Flowchart of simple ant colony algorithm.
Published 2025“…Based on a comprehensive assessment of service transmission reliability and time costs, a route satisfaction evaluation function model has been developed. Utilizing this model, an enhanced Risk-Time Ant Colony Optimization (RT-ACO) routing algorithm is proposed, which builds upon the traditional ant colony algorithm. …”
-
11
Construction process of RF.
Published 2025“…Finally, an improved RF model is constructed by optimizing the parameters of the RF algorithm. …”
-
12
-
13
Data Sheet 1_TBESO-BP: an improved regression model for predicting subclinical mastitis.pdf
Published 2025“…The model is based on TBESO (Multi-strategy Boosted Snake Optimizer) and utilizes monthly Dairy Herd Improvement (DHI) data to forecast the status of subclinical mastitis in cows.…”
-
14
Data used in this study.
Published 2024“…In the hybrid model of this paper, the choice was made to use the Densenet architecture of CNN models with LightGBM as the primary model. …”
-
15
Flow diagram of the proposed model.
Published 2025“…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …”
-
16
DEM error verified by airborne data.
Published 2024“…In the hybrid model of this paper, the choice was made to use the Densenet architecture of CNN models with LightGBM as the primary model. …”
-
17
Error of ICESat-2 with respect to airborne data.
Published 2024“…In the hybrid model of this paper, the choice was made to use the Densenet architecture of CNN models with LightGBM as the primary model. …”
-
18
S1 Data -
Published 2025“…A combination of four machine learning algorithms (XGBoost、Logistic Regression、Random Forest、AdaBoost) was employed to predict NPM recurrence, and the model with the highest Area Under the Curve (AUC) in the test set was selected as the best model. …”
-
19
Iteration curve of the optimization process.
Published 2025“…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
-
20