Search alternatives:
elimination algorithm » maximization algorithm (Expand Search), optimization algorithms (Expand Search), segmentation algorithm (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
data feature » data figure (Expand Search), each feature (Expand Search), a feature (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
elimination algorithm » maximization algorithm (Expand Search), optimization algorithms (Expand Search), segmentation algorithm (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
data feature » data figure (Expand Search), each feature (Expand Search), a feature (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
image model » damage model (Expand Search), primate model (Expand Search), climate model (Expand Search)
-
1
Integrative Clinical and Bio-mechanical Features Predict In-Hospital Trauma Mortality
Published 2024Subjects: -
2
-
3
-
4
-
5
-
6
ROC curve for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
7
Confusion matrix for binary classification.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
8
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…Future work aims to generalize this algorithm for broader biological applications by training additional Cellpose models and adapting the A* framework.…”
-
9
Variable Selection and Estimation for Misclassified Binary Responses and Multivariate Error-Prone Predictors
Published 2023“…The simultaneous appearance of these complex features make data analysis become challenging. To address those concerns, we propose a valid inferential method to deal with measurement error and handle variable selection simultaneously. …”
-
10
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
Published 2025“…In this work, we propose a novel framework that integrates </p><p dir="ltr">Convolutional Neural Networks (CNNs) for image classification and a binary Grey Wolf Optimization (GWO) </p><p dir="ltr">algorithm for feature selection. …”
-
11
-
12
Summary of existing CNN models.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
13
-
14
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
15
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…The MapReduce parallel programming model on the Hadoop platform is used to perform an adaptive fusion of hue, local binary pattern (LBP) and scale-invariant feature transform (SIFT) features extracted from images to derive optimal combinations of weights. …”
-
16
Testing results for classifying AD, MCI and NC.
Published 2024“…To achieve this, we focused the study on addressing the challenge of image noise, which impacts the performance of deep learning models. …”
-
17
Design and implementation of the Multiple Criteria Decision Making (MCDM) algorithm for predicting the severity of COVID-19.
Published 2021“…<p>(A). The MCDM algorithm-Stage 1. Preprocessing, this stage is the process of refining the collected raw data to eliminate noise, including correlation analysis and feature selection based on P values. …”
-
18
Flowchart scheme of the ML-based model.
Published 2024“…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
-
19
Data_Sheet_3_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx
Published 2020“…Many feature selection algorithms have been developed including the support vector machine recursive feature elimination procedure (SVM-RFE) and its variants. …”
-
20
Data_Sheet_2_sigFeature: Novel Significant Feature Selection Method for Classification of Gene Expression Data Using Support Vector Machine and t Statistic.docx
Published 2020“…Many feature selection algorithms have been developed including the support vector machine recursive feature elimination procedure (SVM-RFE) and its variants. …”