بدائل البحث:
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
process optimization » model optimization (توسيع البحث)
image process » damage process (توسيع البحث), image processing (توسيع البحث), simple process (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
feature optimization » resource optimization (توسيع البحث), feature elimination (توسيع البحث), structure optimization (توسيع البحث)
process optimization » model optimization (توسيع البحث)
image process » damage process (توسيع البحث), image processing (توسيع البحث), simple process (توسيع البحث)
data feature » data figure (توسيع البحث), each feature (توسيع البحث), a feature (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
61
-
62
-
63
-
64
-
65
-
66
-
67
-
68
Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm
منشور في 2025"…This strategy </p><p dir="ltr">not only improves detection efficiency and accuracy but also supports early diagnosis and treatment planning, </p><p dir="ltr">leading to better patient outcomes. By leveraging the binary GWO algorithm to optimize the feature selection </p><p dir="ltr">process and CNNs for image classification, the proposed approach reduces computational costs while increasing </p><p dir="ltr">classification accuracy. …"
-
69
-
70
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
71
-
72
Generalized Tensor Decomposition With Features on Multiple Modes
منشور في 2021"…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …"
-
73
The statistical description of the original data set of the patients (<i>n</i> = 162).
منشور في 2025الموضوعات: -
74
The list of parameters of the modified data set for machine learning (<i>n</i> = 162).
منشور في 2025الموضوعات: -
75
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
76
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
77
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
78
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
79
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
80
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"