Showing 121 - 140 results of 141 for search '(( binary data feature optimization algorithm ) OR ( binary image process optimization algorithm ))', query time: 0.57s Refine Results
  1. 121
  2. 122

    Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model by Getachew S. Molla (6416744)

    Published 2019
    “…The methodology incorporates key features of the symmetric eNRTL-SAC model structure to reduce the number of parameters and uses a hybrid of global search algorithms for parameter estimation. …”
  3. 123
  4. 124
  5. 125
  6. 126
  7. 127

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... by Uttam Khatri (12689072)

    Published 2022
    “…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …”
  8. 128

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…<p> The widespread use of electronic patient-generated health data has led to unprecedented opportunities for automated extraction of clinical features from free-text medical notes. …”
  9. 129

    Contextual Dynamic Pricing with Strategic Buyers by Pangpang Liu (18886419)

    Published 2024
    “…In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …”
  10. 130
  11. 131

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…”
  12. 132

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
  13. 133

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
  14. 134
  15. 135
  16. 136

    Models and Dataset by M RN (9866504)

    Published 2025
    “…<p dir="ltr"><b>P3DE (Parameter-less Population Pyramid with Deep Ensemble):</b><br>P3DE is a hybrid feature selection framework that combines the Parameter-less Population Pyramid (P3) metaheuristic optimization algorithm with a deep ensemble of autoencoders. …”
  17. 137

    Flowchart of the entire pipeline. by Andreas Denger (12111159)

    Published 2024
    “…Next, the general protein dataset is converted to a specific transporter dataset according to specified parameters (see Section Dataset creation pipeline). Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …”
  18. 138

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
  19. 139

    Fortran & C++: design fractal-type optical diffractive element by I-Lin Ho (13768960)

    Published 2022
    “…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
  20. 140

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…Demographic, clinical, and heavy metal biomarker data (e.g., blood lead and cadmium levels) were analyzed as features, with hearing loss status—defined as a pure-tone average threshold exceeding 25 dB HL across 500, 1,000, 2000, and 4,000 Hz in the better ear—serving as the binary outcome. …”