يعرض 41 - 55 نتائج من 55 نتيجة بحث عن '(( binary data global optimization algorithm ) OR ( binary cases based optimization algorithm ))*', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 41

    LITNET-2020 data splitting approach. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  2. 42

    Transformation of symbolic features in NSL-KDD. حسب Asmaa Ahmed Awad (16726315)

    منشور في 2023
    "…The ILSTM was then used to build an efficient intrusion detection system for binary and multi-class classification cases. The proposed algorithm has two phases: phase one involves training a conventional LSTM network to get initial weights, and phase two involves using the hybrid swarm algorithms, CBOA and PSO, to optimize the weights of LSTM to improve the accuracy. …"
  3. 43

    Analysis and design of algorithms for the manufacturing process of integrated circuits حسب Sonia Fleytas (16856403)

    منشور في 2023
    "…From this, we propose: (i) a new ILP model, and (ii) a new solution representation, which, unlike the reference work, guarantees that feasible solutions are obtained throughout the generation of new individuals. Based on this new representation, we proposed and evaluated other approximate methods, including a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for test cases usually used in the literature. …"
  4. 44
  5. 45

    Generalized Tensor Decomposition With Features on Multiple Modes حسب Jiaxin Hu (1327875)

    منشور في 2021
    "…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …"
  6. 46

    Thesis-RAMIS-Figs_Slides حسب Felipe Santibañez-Leal (10967991)

    منشور في 2024
    "…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
  7. 47

    Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model حسب Getachew S. Molla (6416744)

    منشور في 2019
    "…The methodology incorporates key features of the symmetric eNRTL-SAC model structure to reduce the number of parameters and uses a hybrid of global search algorithms for parameter estimation. …"
  8. 48
  9. 49

    GSE96058 information. حسب Sepideh Zununi Vahed (9861298)

    منشور في 2024
    "…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
  10. 50

    The performance of classifiers. حسب Sepideh Zununi Vahed (9861298)

    منشور في 2024
    "…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
  11. 51

    Data_Sheet_1_Multiclass Classification Based on Combined Motor Imageries.pdf حسب Cecilia Lindig-León (7889777)

    منشور في 2020
    "…And we propose two new multilabel uses of the Common Spatial Pattern (CSP) algorithm to optimize the signal-to-noise ratio, namely MC2CMI and MC2SMI approaches. …"
  12. 52
  13. 53

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx حسب Yuhong Huang (115702)

    منشور في 2021
    "…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"
  14. 54
  15. 55

    Data_Sheet_1_Alzheimer’s Disease Diagnosis and Biomarker Analysis Using Resting-State Functional MRI Functional Brain Network With Multi-Measures Features and Hippocampal Subfield... حسب Uttam Khatri (12689072)

    منشور في 2022
    "…Finally, we implemented and compared the different feature selection algorithms to integrate the structural features, brain networks, and voxel features to optimize the diagnostic identifications of AD using support vector machine (SVM) classifiers. …"