Search alternatives:
based optimization » whale optimization (Expand Search), bayesian optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data global » daily global (Expand Search)
binary mask » binary image (Expand Search)
mask based » task based (Expand Search), risk based (Expand Search)
based optimization » whale optimization (Expand Search), bayesian optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data global » daily global (Expand Search)
binary mask » binary image (Expand Search)
mask based » task based (Expand Search), risk based (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
8
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
9
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
10
A* Path-Finding Algorithm to Determine Cell Connections
Published 2025“…To address this, the research integrates a modified A* pathfinding algorithm with a U-Net convolutional neural network, a custom statistical binary classification method, and a personalized Min-Max connectivity threshold to automate the detection of astrocyte connectivity.…”
-
11
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
12
Pseudo Code of RBMO.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
13
P-value on CEC-2017(Dim = 30).
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
14
Memory storage behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
15
Elite search behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
16
Description of the datasets.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
17
S and V shaped transfer functions.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
S- and V-Type transfer function diagrams.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
19
Collaborative hunting behavior.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
20
Friedman average rank sum test results.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”