Showing 1 - 20 results of 27 for search '(( binary data guided optimization algorithm ) OR ( dietary data process selection algorithm ))*', query time: 0.65s Refine Results
  1. 1

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  2. 2

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  3. 3

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  4. 4

    IRBMO vs. variant comparison adaptation data. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  5. 5
  6. 6
  7. 7

    Pseudo Code of RBMO. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  8. 8

    P-value on CEC-2017(Dim = 30). by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  9. 9

    Memory storage behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  10. 10

    Elite search behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  11. 11

    Description of the datasets. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  12. 12

    S and V shaped transfer functions. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  13. 13

    S- and V-Type transfer function diagrams. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  14. 14

    Collaborative hunting behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  15. 15

    Friedman average rank sum test results. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  16. 16

    Data Sheet 5_Multidimensional dietary assessment and interpretable machine learning models predict the risk of prediabetes/diabetes and osteoporosis comorbidity in older adults.pdf by Yuwen ShangGuan (22633190)

    Published 2025
    “…Dietary data were collected through 24-h dietary recalls, encompassing macronutrients, micronutrients, food processing classification (NOVA), and five dietary quality scores. …”
  17. 17

    Data Sheet 7_Multidimensional dietary assessment and interpretable machine learning models predict the risk of prediabetes/diabetes and osteoporosis comorbidity in older adults.pdf by Yuwen ShangGuan (22633190)

    Published 2025
    “…Dietary data were collected through 24-h dietary recalls, encompassing macronutrients, micronutrients, food processing classification (NOVA), and five dietary quality scores. …”
  18. 18

    Data Sheet 6_Multidimensional dietary assessment and interpretable machine learning models predict the risk of prediabetes/diabetes and osteoporosis comorbidity in older adults.pdf by Yuwen ShangGuan (22633190)

    Published 2025
    “…Dietary data were collected through 24-h dietary recalls, encompassing macronutrients, micronutrients, food processing classification (NOVA), and five dietary quality scores. …”
  19. 19

    Data Sheet 3_Multidimensional dietary assessment and interpretable machine learning models predict the risk of prediabetes/diabetes and osteoporosis comorbidity in older adults.pdf by Yuwen ShangGuan (22633190)

    Published 2025
    “…Dietary data were collected through 24-h dietary recalls, encompassing macronutrients, micronutrients, food processing classification (NOVA), and five dietary quality scores. …”
  20. 20

    Data Sheet 1_Multidimensional dietary assessment and interpretable machine learning models predict the risk of prediabetes/diabetes and osteoporosis comorbidity in older adults.pdf by Yuwen ShangGuan (22633190)

    Published 2025
    “…Dietary data were collected through 24-h dietary recalls, encompassing macronutrients, micronutrients, food processing classification (NOVA), and five dietary quality scores. …”