Showing 1 - 20 results of 21 for search '(( binary data guided optimization algorithm ) OR ( lines tree process optimization algorithm ))', query time: 0.58s Refine Results
  1. 1

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  2. 2

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  3. 3

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  4. 4
  5. 5
  6. 6

    IRBMO vs. variant comparison adaptation data. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  7. 7
  8. 8
  9. 9

    Pseudo Code of RBMO. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  10. 10

    P-value on CEC-2017(Dim = 30). by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  11. 11

    Memory storage behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  12. 12

    Elite search behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  13. 13

    Description of the datasets. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  14. 14

    S and V shaped transfer functions. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  15. 15

    S- and V-Type transfer function diagrams. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  16. 16

    Collaborative hunting behavior. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  17. 17

    Friedman average rank sum test results. by Chenyi Zhu (9383370)

    Published 2025
    “…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
  18. 18
  19. 19

    Performance of pairing prediction versus training set size and number of pairs per species. by Guillaume Marmier (7495823)

    Published 2019
    “…The three pairing scores corresponding to each of these three methods are employed in two ways: either within each species we find the chain B with optimal pairing score with each chain A (dashed lines), or within each species we employ the Hungarian matching algorithm to find the one-to-one pairing of chains A and B that optimizes the sum of the pairing scores (solid lines). …”
  20. 20

    Models and Dataset by M RN (9866504)

    Published 2025
    “…Operating in a binary search space, TJO simulates intelligent and evasive movements of the prey to guide the population toward optimal solutions. …”