Search alternatives:
guided optimization » based optimization (Expand Search), model optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
data phase » late phase (Expand Search)
guided optimization » based optimization (Expand Search), model optimization (Expand Search)
phase optimization » whale optimization (Expand Search), based optimization (Expand Search), path optimization (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
data phase » late phase (Expand Search)
-
1
-
2
-
3
-
4
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
5
-
6
-
7
-
8
-
9
-
10
-
11
-
12
-
13
-
14
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
15
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
16
Iteration curve of the optimization process.
Published 2025“…The load-bearing mechanism of the proposed steel platform was analyzed theoretically, and finite element analysis (FEA) was employed to evaluate the stresses and deflections of key members. A particle swarm optimization (PSO) algorithm was integrated with the FEA model to optimize the cross-sectional dimensions of the primary beams, secondary beams, and foundation boxes, achieving a balance between load-bearing capacity and cost efficiency. …”
-
17
IRBMO vs. variant comparison adaptation data.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
-
19
-
20
Label-Free Assessment of the Drug Resistance of Epithelial Ovarian Cancer Cells in a Microfluidic Holographic Flow Cytometer Boosted through Machine Learning
Published 2021“…Several morphologic and texture features at a single-cell level have been extracted from the quantitative phase images. In addition, we compared four common machine learning algorithms, including naive Bayes, decision tree, K-nearest neighbors, support vector machine (SVM), and fully connected network. …”