يعرض 21 - 38 نتائج من 38 نتيجة بحث عن '(( binary data joint optimization algorithm ) OR ( binary b model optimization algorithm ))', وقت الاستعلام: 0.40s تنقيح النتائج
  1. 21
  2. 22
  3. 23
  4. 24
  5. 25

    Table_1_bSRWPSO-FKNN: A boosted PSO with fuzzy K-nearest neighbor classifier for predicting atopic dermatitis disease.docx حسب Yupeng Li (507508)

    منشور في 2023
    "…</p>Methods<p>This paper establishes a medical prediction model for the first time on the basis of the enhanced particle swarm optimization (SRWPSO) algorithm and the fuzzy K-nearest neighbor (FKNN), called bSRWPSO-FKNN, which is practiced on a dataset related to patients with AD. …"
  6. 26

    Supplementary Material for: Penalized Logistic Regression Analysis for Genetic Association Studies of Binary Phenotypes حسب Yu Y. (3096192)

    منشور في 2022
    "…Introduction: Increasingly, logistic regression methods for genetic association studies of binary phenotypes must be able to accommodate data sparsity, which arises from unbalanced case-control ratios and/or rare genetic variants. …"
  7. 27
  8. 28

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>K)</b> Algorithm selection from all models. <b>L)</b> Random forest selection. …"
  9. 29
  10. 30

    Fig 1 - حسب Jakub Stoklosa (3315042)

    منشور في 2023
  11. 31
  12. 32
  13. 33

    Models and Dataset حسب M RN (9866504)

    منشور في 2025
    "…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …"
  14. 34

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
  15. 35

    Supplementary Material 8 حسب Nishitha R Kumar (19750617)

    منشور في 2025
    "…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…"
  16. 36

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods حسب Jiacong Du (12035845)

    منشور في 2022
    "…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …"
  17. 37

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx حسب Ali Nabavi (21097424)

    منشور في 2025
    "…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …"
  18. 38

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"