بدائل البحث:
maximization algorithm » optimization algorithms (توسيع البحث), classification algorithm (توسيع البحث)
learning maximization » learning optimization (توسيع البحث), learning motivation (توسيع البحث), learning application (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
data learning » meta learning (توسيع البحث), deep learning (توسيع البحث), a learning (توسيع البحث)
amp bayesian » a bayesian (توسيع البحث), art bayesian (توسيع البحث), task bayesian (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
maximization algorithm » optimization algorithms (توسيع البحث), classification algorithm (توسيع البحث)
learning maximization » learning optimization (توسيع البحث), learning motivation (توسيع البحث), learning application (توسيع البحث)
bayesian optimization » based optimization (توسيع البحث)
data learning » meta learning (توسيع البحث), deep learning (توسيع البحث), a learning (توسيع البحث)
amp bayesian » a bayesian (توسيع البحث), art bayesian (توسيع البحث), task bayesian (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
1
Proposed Algorithm.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
2
An Example of a WPT-MEC Network.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
3
Related Work Summary.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
4
Simulation parameters.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
5
Training losses for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
6
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
7
Normalized computation rate for N = 10.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
8
Summary of Notations Used in this paper.
منشور في 2025"…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
9
-
10
Contextual Dynamic Pricing with Strategic Buyers
منشور في 2024"…Recognizing these challenges, we propose a strategic dynamic pricing policy that incorporates the buyers’ strategic behavior into the online learning to maximize the seller’s cumulative revenue. …"
-
11
-
12
-
13
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
منشور في 2022"…Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …"
-
14
Supplementary Material 8
منشور في 2025"…</p><p dir="ltr">When applied to AMR prediction, SMOTE enhances the ability of classification models to accurately identify resistant <i>Escherichia coli</i> strains by balancing the dataset, ensuring that machine learning algorithms do not overlook rare resistance patterns. …"