يعرض 1 - 20 نتائج من 41 نتيجة بحث عن '(( binary data led optimization algorithm ) OR ( binary b learning optimization algorithm ))*', وقت الاستعلام: 0.44s تنقيح النتائج
  1. 1

    Proposed Algorithm. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  2. 2

    Comparisons between ADAM and NADAM optimizers. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8

    An Example of a WPT-MEC Network. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  9. 9

    Related Work Summary. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  10. 10

    Simulation parameters. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  11. 11

    Training losses for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  12. 12

    Normalized computation rate for N = 10. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  13. 13

    Summary of Notations Used in this paper. حسب Hend Bayoumi (22693738)

    منشور في 2025
    "…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Classification baseline performance. حسب Doaa Sami Khafaga (21463870)

    منشور في 2025
    "…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …"
  20. 20

    Feature selection results. حسب Doaa Sami Khafaga (21463870)

    منشور في 2025
    "…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …"