بدائل البحث:
protein optimization » process optimization (توسيع البحث), property optimization (توسيع البحث), driven optimization (توسيع البحث)
led optimization » lead optimization (توسيع البحث), yet optimization (توسيع البحث), based optimization (توسيع البحث)
based protein » capsid protein (توسيع البحث), based proteomics (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
final based » linac based (توسيع البحث), final breed (توسيع البحث), animal based (توسيع البحث)
data led » data lead (توسيع البحث)
protein optimization » process optimization (توسيع البحث), property optimization (توسيع البحث), driven optimization (توسيع البحث)
led optimization » lead optimization (توسيع البحث), yet optimization (توسيع البحث), based optimization (توسيع البحث)
based protein » capsid protein (توسيع البحث), based proteomics (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
final based » linac based (توسيع البحث), final breed (توسيع البحث), animal based (توسيع البحث)
data led » data lead (توسيع البحث)
-
1
-
2
-
3
-
4
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
5
-
6
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
7
-
8
-
9
ESPDHot: An Effective Machine Learning-Based Approach for Predicting Protein–DNA Interaction Hotspots
منشور في 2024"…Combining the Boruta method with our previously developed Random Grouping strategy, we obtained an optimal set of features. Finally, a stacking classifier is constructed to output prediction results, which integrates three classical predictors, Support Vector Machine (SVM), XGBoost, and Artificial Neural Network (ANN) as the first layer, and Logistic Regression (LR) algorithm as the second one. …"
-
10
ESPDHot: An Effective Machine Learning-Based Approach for Predicting Protein–DNA Interaction Hotspots
منشور في 2024"…Combining the Boruta method with our previously developed Random Grouping strategy, we obtained an optimal set of features. Finally, a stacking classifier is constructed to output prediction results, which integrates three classical predictors, Support Vector Machine (SVM), XGBoost, and Artificial Neural Network (ANN) as the first layer, and Logistic Regression (LR) algorithm as the second one. …"
-
11
Incremental Inverse Design of Desired Soybean Phenotypes
منشور في 2024"…After 20 in silico DBTL cycles, a final population of individuals with a mean protein content of 36.13%, an increase of three standard deviations above the original mean is suggested.…"
-
12
-
13
-
14
-
15
-
16
-
17
-
18
-
19
-
20
An Example of a WPT-MEC Network.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"