بدائل البحث:
loop optimization » codon optimization (توسيع البحث), wolf optimization (توسيع البحث), lead optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data swarm » data share (توسيع البحث)
data loop » data bloom (توسيع البحث), data blood (توسيع البحث), data long (توسيع البحث)
loop optimization » codon optimization (توسيع البحث), wolf optimization (توسيع البحث), lead optimization (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data swarm » data share (توسيع البحث)
data loop » data bloom (توسيع البحث), data blood (توسيع البحث), data long (توسيع البحث)
-
1
-
2
-
3
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…Because of the semipredictive nature of the symmetric eNRTL-SAC model, the segment parameter regression is a critical step for solubility prediction accuracy. A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …"
-
4
-
5
Flow diagram of the automatic animal detection and background reconstruction.
منشور في 2020"…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …"
-
6
Thesis-RAMIS-Figs_Slides
منشور في 2024"…In this direction, the option of estimating the statistics of the model directly from the training image (performing a refined pattern search instead of simulating data) is a very promising.<br><br>Finally, although the developed concepts, ideas and algorithms have been developed for inverse problems in geostatistics, the results are applicable to a wide range of disciplines where similar sampling problems need to be faced, included but not limited to design of communication networks, optimal integration and communication of swarms of robots and drones, remote sensing.…"
-
7
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
8
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"