Search alternatives:
mixture optimization » feature optimization (Expand Search), structure optimization (Expand Search), resource optimization (Expand Search)
process optimization » model optimization (Expand Search)
data mixture » data figure (Expand Search), a mixture (Expand Search), air mixture (Expand Search)
wave process » same process (Expand Search), whole process (Expand Search), phase process (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary wave » binary image (Expand Search)
mixture optimization » feature optimization (Expand Search), structure optimization (Expand Search), resource optimization (Expand Search)
process optimization » model optimization (Expand Search)
data mixture » data figure (Expand Search), a mixture (Expand Search), air mixture (Expand Search)
wave process » same process (Expand Search), whole process (Expand Search), phase process (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary wave » binary image (Expand Search)
-
1
Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures
Published 2021“…This study is devoted to develop a quantitative structure–property relationship model for predicting the <i>T</i><sub>d</sub>,<sub>5%onset</sub> of binary imidazolium IL mixtures. Both in silico design and data analysis descriptors and norm index were employed to encode the structural characteristics of binary IL mixtures. …”
-
2
Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity
Published 2019“…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. Binary mixtures of bacteria showed all three reliably identified organisms down to 1% relative abundance, while only the relative abundance estimates of Centrifuge and CLARK were accurate. …”
-
3
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…The model moreover predicts solubilities in binary solvent mixture and as a function of temperature in satisfactory agreement with experimental solubility.…”
-
4
MCLP_quantum_annealer_V0.5
Published 2025“…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
-
5
Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
6
Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
7
Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
-
8
DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf
Published 2021“…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”