Showing 1 - 8 results of 8 for search '(( binary data mixture optimization algorithm ) OR ( binary wave process optimization algorithm ))*', query time: 0.46s Refine Results
  1. 1

    Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures by Hongpeng He (348094)

    Published 2021
    “…This study is devoted to develop a quantitative structure–property relationship model for predicting the <i>T</i><sub>d</sub>,<sub>5%onset</sub> of binary imidazolium IL mixtures. Both in silico design and data analysis descriptors and norm index were employed to encode the structural characteristics of binary IL mixtures. …”
  2. 2

    Identification and quantitation of clinically relevant microbes in patient samples: Comparison of three k-mer based classifiers for speed, accuracy, and sensitivity by George S. Watts (7962206)

    Published 2019
    “…We tested the accuracy, sensitivity, and resource requirements of three top metagenomic taxonomic classifiers that use fast k-mer based algorithms: Centrifuge, CLARK, and KrakenUniq. Binary mixtures of bacteria showed all three reliably identified organisms down to 1% relative abundance, while only the relative abundance estimates of Centrifuge and CLARK were accurate. …”
  3. 3

    Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model by Getachew S. Molla (6416744)

    Published 2019
    “…The model moreover predicts solubilities in binary solvent mixture and as a function of temperature in satisfactory agreement with experimental solubility.…”
  4. 4

    MCLP_quantum_annealer_V0.5 by Anonymous Anonymous (4854526)

    Published 2025
    “…Theoretical and applied experiments are conducted using four solvers: QBSolv, D-Wave Hybrid binary quadratic model 2, D-Wave Advantage system 4.1, and Gurobi. …”
  5. 5

    Image1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  6. 6

    Image3_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  7. 7

    Image2_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.TIF by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”
  8. 8

    DataSheet1_Applying the Hubbard-Stratonovich Transformation to Solve Scheduling Problems Under Inequality Constraints With Quantum Annealing.pdf by Sizhuo Yu (11429743)

    Published 2021
    “…Its current hardware implementation relies on D-Wave’s Quantum Processing Units, which are limited in terms of number of qubits and architecture while being restricted to solving quadratic unconstrained binary optimization (QUBO) problems. …”