Showing 1 - 20 results of 259 for search '(( binary data model optimization algorithm ) OR ( binary based learning optimization algorithm ))', query time: 0.34s Refine Results
  1. 1

    Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data by Changhun Kim (682542)

    Published 2022
    “…However, ToxCast assays differ in the amount of data and degree of class imbalance (CI). Therefore, the resampling algorithm employed should vary depending on the data distribution to achieve optimal classification performance. …”
  2. 2

    The Pseudo-Code of the IRBMO Algorithm. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
  3. 3

    IRBMO vs. meta-heuristic algorithms boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
  4. 4

    IRBMO vs. feature selection algorithm boxplot. by Chenyi Zhu (9383370)

    Published 2025
    “…In order to comprehensively verify the performance of IRBMO, this paper designs a series of experiments to compare it with nine mainstream binary optimization algorithms. The experiments are based on 12 medical datasets, and the results show that IRBMO achieves optimal overall performance in key metrics such as fitness value, classification accuracy and specificity. …”
  5. 5
  6. 6
  7. 7

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…<p><b>(A)</b> Input data is a list of genotype-level SNPs. <b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
  8. 8
  9. 9

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…The integration of heuristic optimization and machine learning significantly enhances both speed and precision in astrocyte data analysis. …”
  10. 10

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17

    Results of machine learning algorithm. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  18. 18

    ROC comparison of machine learning algorithm. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  19. 19
  20. 20