Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
file optimization » file 1_optimization (Expand Search), field optimization (Expand Search), whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
file optimization » file 1_optimization (Expand Search), field optimization (Expand Search), whale optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
-
141
-
142
Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports
Published 2020“…Pending external validation, the NLP algorithm developed in this study may be implemented as a means to aid researchers in tackling large amounts of data.…”
-
143
Models and Dataset
Published 2025“…</p><p dir="ltr"><br></p><p dir="ltr"><b>TJO (Tom and Jerry Optimization):</b><br>TJO is a nature-inspired metaheuristic algorithm that models the predator-prey dynamics of the cartoon characters Tom (predator) and Jerry (prey). …”
-
144
Seed mix selection model
Published 2022“…</p> <p> </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”
-
145
-
146
-
147
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
-
148
Bayesian sequential design for sensitivity experiments with hybrid responses
Published 2023“…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
-
149
Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx
Published 2022“…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …”
-
150
-
151
-
152
-
153
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
-
154
Flowchart of the entire pipeline.
Published 2024“…Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …”
-
155
Flow diagram of the automatic animal detection and background reconstruction.
Published 2020“…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …”
-
156
Fortran & C++: design fractal-type optical diffractive element
Published 2022“…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
-
157
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”
-
158
Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX
Published 2022“…</p>Methods<p>This diagnostic accuracy study used retrospective data from MIMIC-III and eICU databases. Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …”
-
159
Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png
Published 2025“…RSEE projects heterogeneous input data into an exertion-conditioned latent space, aligning model predictions with observed physiological variance and mitigating false positives by explicitly modeling the overlap between athletic remodeling and subclinical pathology.…”
-
160
An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach
Published 2025“…The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. …”