Search alternatives:
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
primary based » primary case (Expand Search), primary causes (Expand Search), primary care (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
primary based » primary case (Expand Search), primary causes (Expand Search), primary care (Expand Search)
based process » based processes (Expand Search), based probes (Expand Search), based proteins (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data model » data models (Expand Search)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
Features selected by optimization algorithms.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
10
-
11
-
12
-
13
The Pseudo-Code of the IRBMO Algorithm.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
14
-
15
-
16
IRBMO vs. meta-heuristic algorithms boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
17
IRBMO vs. feature selection algorithm boxplot.
Published 2025“…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …”
-
18
Process fault of Tennessee Eastman process.
Published 2024“…This algorithm possesses the capability to adapt its search behavior in response to the changing dynamics of the optimization process. …”
-
19
Effects of Class Imbalance and Data Scarcity on the Performance of Binary Classification Machine Learning Models Developed Based on ToxCast/Tox21 Assay Data
Published 2022“…In this study, the effects of CI and data scarcity (DS) on the performance of binary classification models were investigated using ToxCast bioassay data. …”
-
20
The comparison of the accuracy score of the benchmark and the proposed models.
Published 2025Subjects: