بدائل البحث:
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
learning optimization » learning motivation (توسيع البحث), lead optimization (توسيع البحث)
models optimization » model optimization (توسيع البحث), process optimization (توسيع البحث), wolf optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
-
141
Details of 23 basic benchmark functions.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
142
Related researches.
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
143
S1 Dataset -
منشور في 2024"…<div><p>Feature selection is an important solution for dealing with high-dimensional data in the fields of machine learning and data mining. In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
144
-
145
-
146
Testing results for classifying AD, MCI and NC.
منشور في 2024"…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
-
147
Summary of existing CNN models.
منشور في 2024"…Specifically, an image enhancement algorithm based on histogram equalization and bilateral filtering techniques was deployed to reduce noise and enhance the quality of the images. …"
-
148
Contextual Dynamic Pricing with Strategic Buyers
منشور في 2024"…This underscores the rate optimality of our policy. Importantly, our policy is not a mere amalgamation of existing dynamic pricing policies and strategic behavior handling algorithms. …"
-
149
Generalized Tensor Decomposition With Features on Multiple Modes
منشور في 2021"…Our proposal handles a broad range of data types, including continuous, count, and binary observations. …"
-
150
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
منشور في 2019"…Moreover, a design of experiments is included in the methodology to generate and use experimental data appropriately for model parameter regression and model validation. …"
-
151
-
152
An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach
منشور في 2025"…The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. …"
-
153
Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX
منشور في 2023"…In the model, promotor sequences were encoded by three different kinds of feature descriptors, namely, accumulated nucleotide frequency, k-mer nucleotide composition, and binary encodings. The obtained features were optimized by using correlation and the mRMR-based algorithm. …"
-
154
-
155
-
156
Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx
منشور في 2025"…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …"
-
157
-
158
-
159
-
160