Showing 141 - 159 results of 159 for search '(( binary data models optimization algorithm ) OR ( binary data after optimization algorithm ))', query time: 0.50s Refine Results
  1. 141
  2. 142

    Seed mix selection model by Bethanne Bruninga-Socolar (10923639)

    Published 2022
    “…</p> <p>  </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”
  3. 143
  4. 144

    Bayesian sequential design for sensitivity experiments with hybrid responses by Yuxia Liu (1779592)

    Published 2023
    “…To deal with the problem of complex computation involved in searching for optimal designs, fast algorithms are presented using two strategies to approximate the optimal criterion, denoted as SI-optimal design and Bayesian D-optimal design, respectively. …”
  5. 145

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
  6. 146

    Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx by Çaǧlar Çaǧlayan (12253934)

    Published 2022
    “…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …”
  7. 147

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
  8. 148
  9. 149
  10. 150
  11. 151

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</li><li><b>XGboost: </b>An optimized gradient boosting algorithm that efficiently handles large genomic datasets, commonly used for high-accuracy predictions in <i>E. coli</i> classification.…”
  12. 152

    Flowchart of the entire pipeline. by Andreas Denger (12111159)

    Published 2024
    “…Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …”
  13. 153

    Table_1_Machine Learning Techniques in Blood Pressure Management During the Acute Phase of Ischemic Stroke.DOCX by Orit Mazza (12081914)

    Published 2022
    “…</p>Methods<p>This diagnostic accuracy study used retrospective data from MIMIC-III and eICU databases. Decision trees were constructed by a hierarchical binary recursive partitioning algorithm to predict the BP-lowering of 10–30% off the maximal value when antihypertensive treatment was given in patients with an extremely high BP (above 220/110 or 180/105 mmHg for patients receiving thrombolysis), according to the American Heart Association/American Stroke Association (AHA/ASA), the European Society of Cardiology, and the European Society of Hypertension (ESC/ESH) guidelines. …”
  14. 154

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
  15. 155

    Fortran & C++: design fractal-type optical diffractive element by I-Lin Ho (13768960)

    Published 2022
    “…</p> <p>(4) export geometry/optics raw data and figures for binary DOE devices.</p> <p><br></p> <p>[Wolfram Mathematica code "square_triangle_DOE.nb"]:</p> <p>read the optimized binary DOE document (after Fortran & C++ code) to calculate its diffractive fields for comparison.…”
  16. 156

    Flow diagram of the automatic animal detection and background reconstruction. by David Tadres (9120564)

    Published 2020
    “…If the identical blob that was detected in panel J (bottom) is found in any of the new subtracted binary images (cyan arrow), the animal is considered as having left its original position, and the algorithm continues. …”
  17. 157

    An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach by Sanaa Badr (20628838)

    Published 2025
    “…The aim of this study is to build Machine learning (ML) decision-support models to predict the optimal range of embryo numbers to transfer, using data from infertile couples identified through literature reviews. …”
  18. 158

    Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png by Minjin Guo (22751300)

    Published 2025
    “…RSEE projects heterogeneous input data into an exertion-conditioned latent space, aligning model predictions with observed physiological variance and mitigating false positives by explicitly modeling the overlap between athletic remodeling and subclinical pathology.…”
  19. 159

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles by Soham Savarkar (21811825)

    Published 2025
    “…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”