Search alternatives:
process optimization » model optimization (Expand Search)
path optimization » swarm optimization (Expand Search), whale optimization (Expand Search), based optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data path » data data (Expand Search), data part (Expand Search)
process optimization » model optimization (Expand Search)
path optimization » swarm optimization (Expand Search), whale optimization (Expand Search), based optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
data path » data data (Expand Search), data part (Expand Search)
-
21
-
22
-
23
The result of the Wilcoxon test of presented COFFO against compared methods.
Published 2022Subjects: -
24
-
25
Convergence graphs for ten CEC 2019 benchmark functions and direct comparison between COFFO and FFO.
Published 2022Subjects: -
26
-
27
-
28
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…</p><p dir="ltr">In terms of classification, a second algorithm was developed and employed to preliminary sort or group the individual cells (after excluding the overlapping cells manually) into different categories using five geometric measurements applied to the extracted contour from each binary image mask (see PathOlOgics_script_2; preliminary shape measurements). …”
-
29
-
30
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
31
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
32
-
33
-
34
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
35
-
36
-
37
-
38
-
39
-
40