Search alternatives:
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search), process optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a model » _ model (Expand Search)
policy optimization » topology optimization (Expand Search), wolf optimization (Expand Search), process optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary a » binary _ (Expand Search), binary b (Expand Search), hilary a (Expand Search)
a model » _ model (Expand Search)
-
121
Classification baseline performance.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
122
Feature selection results.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
123
ANOVA test result.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
124
Summary of literature review.
Published 2025“…To overcome these limitations, this study introduces a comprehensive deep learning framework enhanced with the innovative bio-inspired Ocotillo Optimization Algorithm (OcOA), designed to improve the accuracy and efficiency of bone marrow cell classification. …”
-
125
Data_Sheet_1_Pneumonia detection by binary classification: classical, quantum, and hybrid approaches for support vector machine (SVM).pdf
Published 2024“…A support vector machine (SVM) is attractive because binary classification can be represented as an optimization problem, in particular as a Quadratic Unconstrained Binary Optimization (QUBO) model, which, in turn, maps naturally to an Ising model, thereby making annealing—classical, quantum, and hybrid—an attractive approach to explore. …”
-
126
SHAP bar plot.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
127
Sample screening flowchart.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
128
Descriptive statistics for variables.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
129
SHAP summary plot.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
130
Display of the web prediction interface.
Published 2025“…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
-
131
-
132
Wilcoxon test results for feature selection.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
133
Feature selection metrics and their definitions.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
134
Feature selection results.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
135
ANOVA test for feature selection.
Published 2025“…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …”
-
136
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
137
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
138
Dynamic resource allocation process.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
139
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
140
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”