Showing 141 - 160 results of 271 for search '(( binary data process classification algorithm ) OR ( binary a based optimization algorithm ))', query time: 0.57s Refine Results
  1. 141

    <i>hi</i>PRS algorithm process flow. by Michela C. Massi (14599915)

    Published 2023
    “…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …”
  2. 142

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
  3. 143

    Data_Sheet_1_Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning.PDF by Romena Yasmin (12970919)

    Published 2022
    “…Five types of input elicitation methods are tested: binary classification (positive or negative); the (x, y)-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). …”
  4. 144

    Triplet Matching for Estimating Causal Effects With Three Treatment Arms: A Comparative Study of Mortality by Trauma Center Level by Giovanni Nattino (561797)

    Published 2021
    “…We implement the evidence factors method for binary outcomes, which includes a randomization-based testing strategy and a sensitivity analysis for hidden bias in three-group matched designs. …”
  5. 145
  6. 146

    Multicategory Angle-Based Learning for Estimating Optimal Dynamic Treatment Regimes With Censored Data by Fei Xue (24567)

    Published 2021
    “…In this article, we develop a novel angle-based approach to search the optimal DTR under a multicategory treatment framework for survival data. …”
  7. 147
  8. 148

    SHAP bar plot. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  9. 149

    Sample screening flowchart. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  10. 150

    Descriptive statistics for variables. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  11. 151

    SHAP summary plot. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  12. 152

    ROC curves for the test set of four models. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  13. 153

    Display of the web prediction interface. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  14. 154

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  15. 155

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  16. 156

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  17. 157

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  18. 158

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. …”
  19. 159

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) by Elias Said-Hung (10790310)

    Published 2024
    “…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  20. 160

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”