يعرض 161 - 180 نتائج من 269 نتيجة بحث عن '(( binary data process classification algorithm ) OR ( binary a model optimization algorithm ))', وقت الاستعلام: 0.59s تنقيح النتائج
  1. 161

    Feature selection metrics and their definitions. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  2. 162

    Feature selection results. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  3. 163

    ANOVA test for feature selection. حسب Amal H. Alharbi (21755906)

    منشور في 2025
    "…<div><p>Modern sustainable farming demands precise water management techniques, particularly for crops like potatoes that require high-quality irrigation to ensure optimal growth. This study presents a novel hybrid metaheuristic framework that combines Dipper Throated Optimization (DTO), a bio-inspired algorithm modeled on bird foraging behavior, with Polar Rose Search (PRS) to enhance deep learning models in predictive water quality assessment. …"
  4. 164
  5. 165

    Predicting Thermal Decomposition Temperature of Binary Imidazolium Ionic Liquid Mixtures from Molecular Structures حسب Hongpeng He (348094)

    منشور في 2021
    "…This study is devoted to develop a quantitative structure–property relationship model for predicting the <i>T</i><sub>d</sub>,<sub>5%onset</sub> of binary imidazolium IL mixtures. …"
  6. 166
  7. 167
  8. 168
  9. 169

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) حسب Elias Said-Hung (10790310)

    منشور في 2024
    "…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …"
  10. 170

    Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model حسب Getachew S. Molla (6416744)

    منشور في 2019
    "…A particle swarm optimization algorithm is incorporated to preregress conceptual segment parameters of solutes. …"
  11. 171

    Summary of existing CNN models. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…The model was trained and evaluated using a 10-fold cross-validation sampling approach with a learning rate of 0.001 and 200 training epochs at each instance. …"
  12. 172
  13. 173
  14. 174

    DataSheet_1_Raman Spectroscopic Differentiation of Streptococcus pneumoniae From Other Streptococci Using Laboratory Strains and Clinical Isolates.pdf حسب Marcel Dahms (9160118)

    منشور في 2022
    "…Improvement of the classification rate is expected with optimized model parameters and algorithms as well as with a larger spectral data base for training.…"
  15. 175

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
  16. 176

    DataSheet_1_Patient-Level Effectiveness Prediction Modeling for Glioblastoma Using Classification Trees.docx حسب Tine Geldof (8380125)

    منشور في 2020
    "…Secondly, a classification tree algorithm was trained and validated for dividing individual patients into treatment response and non-response groups. …"
  17. 177
  18. 178
  19. 179
  20. 180

    MCLP_quantum_annealer_V0.5 حسب Anonymous Anonymous (4854526)

    منشور في 2025
    "…<p dir="ltr">Geospatial optimization problems are fundamental research issues in geographic information science modeling, characterized by high dimensionality, dynamics, and discreteness. …"