Showing 61 - 80 results of 139 for search '(( binary data process classification algorithm ) OR ( binary a while optimization algorithm ))*', query time: 1.27s Refine Results
  1. 61

    Data_Sheet_1_Posiform planting: generating QUBO instances for benchmarking.pdf by Georg Hahn (12530469)

    Published 2023
    “…<p>We are interested in benchmarking both quantum annealing and classical algorithms for minimizing quadratic unconstrained binary optimization (QUBO) problems. …”
  2. 62
  3. 63

    The overview of the proposed method. by Seyed Mahdi Hosseiniyan Khatibi (16791475)

    Published 2023
    “…<p>Five main steps, including reading, preprocessing, feature selection, classification, and association rule mining were applied to the mRNA expression data. 1) Required data was collected from the TCGA repository and got organized during the reading step. 2) The pre-processing step includes two sub-steps, nested cross-validation and data normalization. 3) The feature-selection step contains two parts: the filter method based on a t-test and the wrapper method based on binary Non-Dominated Sorting Genetic Algorithm II (NSGAII) for mRNA data, in which candidate mRNAs with more relevance to early-stage and late-stage Papillary Thyroid Cancer (PTC) were selected. 4) Multi-classifier models were utilized to evaluate the discrimination power of the selected mRNAs. 5) The Association Rule Mining method was employed to discover the possible hidden relationship between the selected mRNAs and early and late stages of PTC firstly, and the complex relationship among the selected mRNAs secondly.…”
  4. 64
  5. 65

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
  6. 66

    Data_Sheet_1_Improving Crowdsourcing-Based Image Classification Through Expanded Input Elicitation and Machine Learning.PDF by Romena Yasmin (12970919)

    Published 2022
    “…Five types of input elicitation methods are tested: binary classification (positive or negative); the (x, y)-coordinate of the position participants believe a target object is located; level of confidence in binary response (on a scale from 0 to 100%); what participants believe the majority of the other participants' binary classification is; and participant's perceived difficulty level of the task (on a discrete scale). …”
  7. 67
  8. 68

    Flow diagram of the proposed model. by Uğur Ejder (22683228)

    Published 2025
    “…<div><p>Machine learning models are increasingly applied to assisted reproductive technologies (ART), yet most studies rely on conventional algorithms with limited optimization. This proof-of-concept study investigates whether a hybrid Logistic Regression–Artificial Bee Colony (LR–ABC) framework can enhance predictive performance in in vitro fertilization (IVF) outcomes while producing interpretable, hypothesis-driven associations with nutritional and pharmaceutical supplement use. …”
  9. 69

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  10. 70

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
  11. 71

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) by Elias Said-Hung (10790310)

    Published 2024
    “…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  12. 72
  13. 73

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Two NIRs devices, the portable QualitySpec® Trek (QST) and the benchtop NIRFlex N-500 were used to collect spectral data. Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
  14. 74
  15. 75

    Summary of literature review. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  16. 76

    Topic description. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  17. 77

    Notations along with their descriptions. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  18. 78

    Detail of the topics extracted from DUC2002. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  19. 79

    DataSheet_1_Patient-Level Effectiveness Prediction Modeling for Glioblastoma Using Classification Trees.docx by Tine Geldof (8380125)

    Published 2020
    “…Secondly, a classification tree algorithm was trained and validated for dividing individual patients into treatment response and non-response groups. …”
  20. 80