Search alternatives:
maximization algorithm » optimization algorithms (Expand Search), classification algorithm (Expand Search)
process maximization » process optimization (Expand Search), profit maximization (Expand Search), process optimisation (Expand Search)
whale optimization » swarm optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
data whale » data where (Expand Search), data wales (Expand Search)
maximization algorithm » optimization algorithms (Expand Search), classification algorithm (Expand Search)
process maximization » process optimization (Expand Search), profit maximization (Expand Search), process optimisation (Expand Search)
whale optimization » swarm optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
data whale » data where (Expand Search), data wales (Expand Search)
-
1
-
2
-
3
Proposed Algorithm.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
4
-
5
An Example of a WPT-MEC Network.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
6
Related Work Summary.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
7
Simulation parameters.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
8
Training losses for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
9
Comparisons between ADAM and NADAM optimizers.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
10
Normalized computation rate for N = 10.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
11
Summary of Notations Used in this paper.
Published 2025“…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
12
-
13
Proposed model tuned hyperparameters.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
14
The workflow of the proposed model.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
15
ResNeXt101 training and results.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
16
Proposed model specificity and DSC outcomes.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
17
Accuracy comparison of proposed and other models.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
18
Architecture of ConvNet.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
19
Comparison of state-of-the-art method.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”
-
20
Proposed model sensitivity outcome.
Published 2024“…To select the most informative features for effective segmentation, we utilize an advanced meta-heuristics algorithm called Advanced Whale Optimization (AWO). …”