Showing 141 - 160 results of 397 for search '(( binary data process optimisation algorithm ) OR ( primary data used optimization algorithm ))', query time: 0.61s Refine Results
  1. 141

    CEC2019 benchmark functions. by Guangwei Liu (181992)

    Published 2023
    “…The primary objective of MSHHOTSA is to address the limitations of the tunicate swarm algorithm, which include slow optimization speed, low accuracy, and premature convergence when dealing with complex problems. …”
  2. 142
  3. 143
  4. 144
  5. 145

    Table_1_One-Time Optimization of Advanced T Cell Culture Media Using a Machine Learning Pipeline.DOCX by Paul Grzesik (11136582)

    Published 2021
    “…When optimizing culture media for primary cells used in cell and gene therapy, traditional DoE approaches that depend on interpretable models will not always provide reliable predictions due to high donor variability. …”
  6. 146
  7. 147
  8. 148
  9. 149
  10. 150

    Block diagram of MSMO classifier. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  11. 151

    Multinomial logistic classifier [25]. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  12. 152

    Flowchart of random forest classifier [30]. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  13. 153

    Research objectives achievement. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  14. 154

    Implementation view of the research framework. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  15. 155

    S1 Dataset - by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  16. 156

    LibSVM classifier [14]. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  17. 157

    Parameter configuration of ML classifiers. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  18. 158

    Naïve bayes classifier [23]. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  19. 159

    KNN architecture [29]. by Muhammad Asim Shahid (15285640)

    Published 2023
    “…Furthermore, on (HDD Mono) the SMO classifier gives the highest percentage of accuracy and less fault prediction fault in terms of 80/20 (87.72%), 70/30 (89.41%), and 5 folds cross-validation (88.38%), and (HDD-Multi) in terms of 80/20 (93.64%), 70/30 (90.91%), and 5 folds cross-validation (88.20%). Whereas, primary data results found RF classifier gives the highest percentage of accuracy and less fault prediction in terms of 80/20 (97.14%), 70/30 (96.19%), and 5 folds cross-validation (95.85%) in the primary data results, but the algorithm complexity (0.17 seconds) is not good. …”
  20. 160

    Performance metrics for BrC. by Afnan M. Alhassan (18349378)

    Published 2024
    “…After the image has been pre-processed, it is segmented using the Thresholding Level set approach. Next, we propose a hybrid chaotic sand cat optimization technique, together with the Remora Optimization Algorithm (ROA) for feature selection. …”