يعرض 161 - 180 نتائج من 258 نتيجة بحث عن '(( binary data process optimization algorithm ) OR ( binary a based optimization algorithm ))*', وقت الاستعلام: 0.49s تنقيح النتائج
  1. 161

    Display of the web prediction interface. حسب Meng Cao (105914)

    منشور في 2025
    "…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…"
  2. 162

    Contextual Dynamic Pricing with Strategic Buyers حسب Pangpang Liu (18886419)

    منشور في 2024
    "…In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …"
  3. 163
  4. 164

    Fig 1 - حسب Jakub Stoklosa (3315042)

    منشور في 2023
  5. 165

    Summary of literature review. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  6. 166

    Topic description. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  7. 167

    Notations along with their descriptions. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  8. 168

    Detail of the topics extracted from DUC2002. حسب Muhammad Ayyaz Sheikh (18610943)

    منشور في 2024
    "…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …"
  9. 169
  10. 170

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP حسب Xiaoyuan Wang (492534)

    منشور في 2022
    "…<p>It is of great practical and theoretical significance to identify driver fatigue state in real time and accurately and provide active safety warning in time. In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …"
  11. 171
  12. 172
  13. 173

    the functioning of BRPSO. حسب Hossein Jarrahi (22530251)

    منشور في 2025
    "…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
  14. 174

    Characteristic of 6- and 10-story SMRF [99,98]. حسب Hossein Jarrahi (22530251)

    منشور في 2025
    "…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
  15. 175

    The RFD’s behavior mechanism (2002). حسب Hossein Jarrahi (22530251)

    منشور في 2025
    "…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …"
  16. 176
  17. 177

    Flowchart scheme of the ML-based model. حسب Noshaba Qasmi (20405009)

    منشور في 2024
    "…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …"
  18. 178
  19. 179
  20. 180