Showing 161 - 180 results of 258 for search '(( binary data process optimization algorithm ) OR ( binary a based optimization algorithm ))', query time: 0.41s Refine Results
  1. 161

    Display of the web prediction interface. by Meng Cao (105914)

    Published 2025
    “…</p><p>Objective</p><p>This study aimed to develop a risk prediction model for CI in CKD patients using machine learning algorithms, with the objective of enhancing risk prediction accuracy and facilitating early intervention.…”
  2. 162

    Contextual Dynamic Pricing with Strategic Buyers by Pangpang Liu (18886419)

    Published 2024
    “…In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …”
  3. 163
  4. 164
  5. 165

    Summary of literature review. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  6. 166

    Topic description. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  7. 167

    Notations along with their descriptions. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  8. 168

    Detail of the topics extracted from DUC2002. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  9. 169
  10. 170

    Data_Sheet_1_A real-time driver fatigue identification method based on GA-GRNN.ZIP by Xiaoyuan Wang (492534)

    Published 2022
    “…<p>It is of great practical and theoretical significance to identify driver fatigue state in real time and accurately and provide active safety warning in time. In this paper, a non-invasive and low-cost method of fatigue driving state identification based on genetic algorithm optimization of generalized regression neural network model is proposed. …”
  11. 171
  12. 172
  13. 173

    the functioning of BRPSO. by Hossein Jarrahi (22530251)

    Published 2025
    “…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  14. 174

    Characteristic of 6- and 10-story SMRF [99,98]. by Hossein Jarrahi (22530251)

    Published 2025
    “…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  15. 175

    The RFD’s behavior mechanism (2002). by Hossein Jarrahi (22530251)

    Published 2025
    “…The optimization problem is formulated based on the seismic energy dissipation concept, employing a modified binary and real-coded particle swarm optimization (BRPSO) algorithm. …”
  16. 176
  17. 177

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  18. 178
  19. 179
  20. 180