بدائل البحث:
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
data process » data processing (توسيع البحث), damage process (توسيع البحث), data access (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a model » _ model (توسيع البحث)
model optimization » codon optimization (توسيع البحث), global optimization (توسيع البحث), based optimization (توسيع البحث)
data process » data processing (توسيع البحث), damage process (توسيع البحث), data access (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
a model » _ model (توسيع البحث)
-
41
Event-driven data flow processing.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
42
Python-Based Algorithm for Estimating NRTL Model Parameters with UNIFAC Model Simulation Results
منشور في 2025"…A Python-based algorithm was developed for estimating the nonrandom two-liquid (NRTL) model parameters of aqueous binary systems in a straightforward manner from simplified molecular-input line-entry specification (SMILES) strings of substances in a system. …"
-
43
-
44
-
45
-
46
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
47
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
48
Dynamic resource allocation process.
منشور في 2025"…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …"
-
49
Algorithm for generating hyperparameter.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
50
MCLP_quantum_annealer_V0.5
منشور في 2025"…<p dir="ltr">Geospatial optimization problems are fundamental research issues in geographic information science modeling, characterized by high dimensionality, dynamics, and discreteness. …"
-
51
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
52
-
53
Results of machine learning algorithm.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
54
ROC comparison of machine learning algorithm.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
55
Hyperparameters of the LSTM Model.
منشور في 2025"…Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. …"
-
56
QSAR model for predicting neuraminidase inhibitors of influenza A viruses (H1N1) based on adaptive grasshopper optimization algorithm
منشور في 2020"…The binary grasshopper optimization algorithm (BGOA) is a new meta-heuristic optimization algorithm, which has been used successfully to perform feature selection. …"
-
57
Prediction results of individual models.
منشور في 2025"…Out of all the models, LSTM produced the best results. The AD-PSO-Guided WOA algorithm was used to adjust the hyperparameters for the LSTM model. …"
-
58
-
59
Best optimizer results of Lightbgm.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"
-
60
Best optimizer results of Adaboost.
منشور في 2024"…To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …"