Search alternatives:
process optimization » model optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
process optimization » model optimization (Expand Search)
design optimization » bayesian optimization (Expand Search)
data process » data processing (Expand Search), damage process (Expand Search), data access (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
-
121
-
122
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
123
GSE96058 information.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
124
The performance of classifiers.
Published 2024“…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …”
-
125
Fortran & C++: design fractal-type optical diffractive element
Published 2022“…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
-
126
Confusion matrix.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
127
Parameter settings.
Published 2025“…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
-
128
Solubility Prediction of Different Forms of Pharmaceuticals in Single and Mixed Solvents Using Symmetric Electrolyte Nonrandom Two-Liquid Segment Activity Coefficient Model
Published 2019“…The methodology incorporates key features of the symmetric eNRTL-SAC model structure to reduce the number of parameters and uses a hybrid of global search algorithms for parameter estimation. Moreover, a design of experiments is included in the methodology to generate and use experimental data appropriately for model parameter regression and model validation. …”
-
129
PathOlOgics_RBCs Python Scripts.zip
Published 2023“…This process generated a ground-truth binary semantic segmentation mask and determined the bounding box coordinates (XYWH) for each cell. …”
-
130
Improved support vector machine classification algorithm based on adaptive feature weight updating in the Hadoop cluster environment
Published 2019“…This result reflects the effectiveness of the algorithm, which provides a basis for the effective analysis and processing of image big data.…”
-
131
-
132
-
133
-
134
Contextual Dynamic Pricing with Strategic Buyers
Published 2024“…<p>Personalized pricing, which involves tailoring prices based on individual characteristics, is commonly used by firms to implement a consumer-specific pricing policy. In this process, buyers can also strategically manipulate their feature data to obtain a lower price, incurring certain manipulation costs. …”
-
135
Seed mix selection model
Published 2022“…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …”
-
136
DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
137
-
138
Models and Dataset
Published 2025“…Designed for high-dimensional biological data, P3DE dynamically evaluates candidate feature subsets using an ensemble of autoencoders with different activation functions (Sigmoid, Tanh, ReLU). …”
-
139
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
140
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”