بدائل البحث:
process optimization » model optimization (توسيع البحث)
field optimization » lead optimization (توسيع البحث), guided optimization (توسيع البحث), linear optimization (توسيع البحث)
data process » data processing (توسيع البحث), damage process (توسيع البحث), data access (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data field » data file (توسيع البحث), dark field (توسيع البحث)
process optimization » model optimization (توسيع البحث)
field optimization » lead optimization (توسيع البحث), guided optimization (توسيع البحث), linear optimization (توسيع البحث)
data process » data processing (توسيع البحث), damage process (توسيع البحث), data access (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data field » data file (توسيع البحث), dark field (توسيع البحث)
-
21
-
22
Mean fitness and standard deviation results of compared approaches on CEC2019 benchmark functions.
منشور في 2022الموضوعات: -
23
-
24
-
25
-
26
The result of the Wilcoxon test of presented COFFO against compared methods.
منشور في 2022الموضوعات: -
27
-
28
Convergence graphs for ten CEC 2019 benchmark functions and direct comparison between COFFO and FFO.
منشور في 2022الموضوعات: -
29
-
30
-
31
-
32
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
33
Proposed Algorithm.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
34
-
35
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…Hence, an Energy-Harvesting Reinforcement Learning-based Offloading Decision Algorithm (EHRL) is proposed. EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …"
-
36
-
37
Parameter settings of the comparison algorithms.
منشور في 2024"…In this paper, we present an improved mountain gazelle optimizer (IMGO) based on the newly proposed mountain gazelle optimizer (MGO) and design a binary version of IMGO (BIMGO) to solve the feature selection problem for medical data. …"
-
38
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
39
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
40
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"