Showing 1 - 20 results of 39 for search '(( binary data processing detection algorithm ) OR ( binary mask based optimization algorithm ))*', query time: 1.57s Refine Results
  1. 1

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …”
  2. 2
  3. 3
  4. 4

    Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things by Ashok Kumar K (21441108)

    Published 2025
    “…In general, BRBPNN does not show any optimization adaption methods to determine the optimal parameter for appropriate detection. Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
  5. 5
  6. 6

    Algoritmo de detección de odio en español (Algorithm for detection of hate speech in Spanish) by Elias Said-Hung (10790310)

    Published 2024
    “…</li></ul><h2>Training Process</h2><h3>Pre-workout</h3><ul><li>Batch size: 16</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li></ul><h3>Fine-tuning</h3><ul><li>Batch size: 128</li><li>Epochs: 5</li><li>Learning rate: 2e-5 with 10% warmup steps</li><li>Early stopping with patience=2</li><li>Custom metrics:</li><li>Recall for non-hate class</li><li>Precision for hate class</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.9 (non-hate)</li><li>Precision at recall=0.9 (hate)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Metrics by class</li><li>Confusion matrix</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required (see requirements.txt for the full list):</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li></ul><h2>Usage</h2><p dir="ltr">The model expects input data with the following specifications:</p><ol><li><b>Data Format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Mandatory column name: <code>text</code> (type string)</li><li>Optional column name: <code>label</code> (type integer, 0 or 1) if available for evaluation</li></ul><ol><li><b>Text Preprocessing</b>:</li></ol><ul><li>Text will be automatically converted to lowercase during processing</li><li>Maximum length: 128 tokens (longer texts will be truncated)</li><li>Special characters, URLs, and emojis must remain in the text (the tokenizer handles these)</li></ul><ol><li><b>Label Encoding</b>:</li></ol><ul><li><code>0</code> = No hateful content (including neutral/positive content)</li><li>1 = Hate speech</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at:Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  7. 7

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) by Daniel Pérez Palau (11097348)

    Published 2024
    “…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
  8. 8
  9. 9

    Data set constituents. by Rémy Peyret (14691736)

    Published 2023
    “…The high performance of the algorithm at both centers shows that the calibration process is efficient. …”
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Results of the model on test sets 1 and 2. by Rémy Peyret (14691736)

    Published 2023
    “…The high performance of the algorithm at both centers shows that the calibration process is efficient. …”
  15. 15

    Scanners and staining methods. by Rémy Peyret (14691736)

    Published 2023
    “…The high performance of the algorithm at both centers shows that the calibration process is efficient. …”
  16. 16

    GSE96058 information. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
  17. 17

    The performance of classifiers. by Sepideh Zununi Vahed (9861298)

    Published 2024
    “…</p><p>Results</p><p>In this study, five main steps were followed for the analysis of mRNA expression data: reading, preprocessing, feature selection, classification, and SHAP algorithm. …”
  18. 18
  19. 19
  20. 20

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”