Search alternatives:
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
data processing » image processing (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary b » binary _ (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
processing optimization » process optimization (Expand Search), process optimisation (Expand Search), routing optimization (Expand Search)
model optimization » codon optimization (Expand Search), global optimization (Expand Search), based optimization (Expand Search)
data processing » image processing (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary b » binary _ (Expand Search)
b model » _ model (Expand Search), a model (Expand Search), 2 model (Expand Search)
-
121
-
122
Fortran & C++: design fractal-type optical diffractive element
Published 2022“…</p> <p>(2) calculate diffraction fields for fractal and/or grid-matrix (binary) phase-holograms.</p> <p>(3) optimize the fractal and/or grid-matrix holograms for given target diffraction images, using annealing algorithms. …”
-
123
Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx
Published 2024“…Cooking data were classified into binary and multiclass variables (CT4C and CT6C). …”
-
124
Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles
Published 2025“…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…”
-
125
Seed mix selection model
Published 2022“…The genetic algorithm then operated over 1000 iterations, applying crossover and mutation processes to optimize bee richness. …”
-
126
Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx
Published 2025“…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”