Showing 41 - 59 results of 59 for search '(( binary data processing visualization algorithm ) OR ( binary a wolf optimization algorithm ))*', query time: 0.44s Refine Results
  1. 41

    Feature selection process. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  2. 42

    Results of KNN. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  3. 43

    After upsampling. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  4. 44

    Results of Extra tree. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  5. 45

    Gradient boosting classifier results. by Balraj Preet Kaur (20370832)

    Published 2024
    “…Motivated by the above, in this proposal, we design an improved model to predict the existence of respiratory disease among patients by incorporating hyperparameter optimization and feature selection. To optimize the parameters of the machine learning algorithms, hyperparameter optimization with a genetic algorithm is proposed and to reduce the size of the feature set, feature selection is performed using binary grey wolf optimization algorithm. …”
  6. 46

    Summary of literature review. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  7. 47

    Topic description. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  8. 48

    Notations along with their descriptions. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  9. 49

    Detail of the topics extracted from DUC2002. by Muhammad Ayyaz Sheikh (18610943)

    Published 2024
    “…To overcome this limitation, recent advancements have introduced multi-objective evolutionary algorithms for ATS. This study proposes an enhancement to the performance of ATS through the utilization of an improved version of the Binary Multi-Objective Grey Wolf Optimizer (BMOGWO), incorporating mutation. …”
  10. 50

    S1 Data - by Lijie Feng (3412118)

    Published 2023
    “…The TF-IDF (Term Frequency-Inverse Document Frequency) algorithm processes the data to obtain critical technical words. …”
  11. 51
  12. 52

    PathOlOgics_RBCs Python Scripts.zip by Ahmed Elsafty (16943883)

    Published 2023
    “…</p><p dir="ltr">To assess the consistency, diversity, and complexity of the processed data, the Uniform Manifold Approximation and Projection (UMAP) technique was employed to investigate the structural relationships among the various classes (see PathOlOgics_script_3; UMAP visualizations). …”
  13. 53
  14. 54

    Table_1_An efficient decision support system for leukemia identification utilizing nature-inspired deep feature optimization.pdf by Muhammad Awais (263096)

    Published 2024
    “…To optimize feature selection, a customized binary Grey Wolf Algorithm is utilized, achieving an impressive 80% reduction in feature size while preserving key discriminative information. …”
  15. 55
  16. 56

    Raw LC-MS/MS and RNA-Seq Mitochondria data by Stefano Martellucci (16284377)

    Published 2025
    “…The data were filtered as follows: (a) binary expression of a protein (i.e., protein exclusively identified in either scLRP1+/+ or scLRP1-/-) was only considered relevant if all scLRP1+/+ samples or all scLRP1-/- samples expressed the protein. …”
  17. 57

    Schematic overview of SINATRA Pro: A novel framework for discovering biophysical signatures that differentiate classes of proteins. by Wai Shing Tang (9541179)

    Published 2022
    “…<p><b>(A)</b> The SINATRA Pro algorithm requires the following inputs: <i>(i)</i> (<i>x</i>, <i>y</i>, <i>z</i>)-coordinates corresponding to the structural position of each atom in every protein; <i>(ii)</i> <b>y</b>, a binary vector denoting protein class or phenotype (e.g., mutant versus wild-type); <i>(iii)</i> <i>r</i>, the cutoff distance for simplicial construction (i.e., constructing the mesh representation for every protein); <i>(iv)</i> <i>c</i>, the number of cones of directions; <i>(v)</i> <i>d</i>, the number of directions within each cone; <i>(vi)</i> <i>θ</i>, the cap radius used to generate directions in a cone; and <i>(vii)</i> <i>l</i>, the number of sublevel sets (i.e., filtration steps) used to compute the differential Euler characteristic (DEC) curve along a given direction. …”
  18. 58
  19. 59

    Images of mouse popliteal lymph node vascular structure derived using phase-contrast synchrotron micro-computed tomography (µCT) by Mohammad Jafarnejad (6852338)

    Published 2019
    “…The binary data were then skeletonized and diameters and length of the vessels as well as the surface area density were calculated. …”