Showing 161 - 180 results of 188 for search '(( binary data property optimization algorithm ) OR ( binary a model optimization algorithm ))', query time: 0.41s Refine Results
  1. 161

    Seed mix selection model by Bethanne Bruninga-Socolar (10923639)

    Published 2022
    “…</p> <p>  </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …”
  2. 162

    Thesis-RAMIS-Figs_Slides by Felipe Santibañez-Leal (10967991)

    Published 2024
    “…Importantly, this strategy locates samples adaptively on the transition between facies which improves the performance of conventional \emph{<i>MPS</i>} algorithms. In conclusion, this work shows that preferential sampling can contribute in \emph{<i>MPS</i>} even at very small sampling regimes and, as a corollary, demonstrates that prior models (obtained form a training image) can be used effectively not only to simulate non-sensed variables of the field, but to decide where to measure next.…”
  3. 163

    Table_1_Computational prediction of promotors in Agrobacterium tumefaciens strain C58 by using the machine learning technique.DOCX by Hasan Zulfiqar (12117255)

    Published 2023
    “…This study aimed to develop a machine learning-based model to predict promotors in Agrobacterium tumefaciens (A. tumefaciens) strain C58. …”
  4. 164

    Processed dataset to train and test the WGAN-GP_IMOA_DA_Ensemble model by Ramya Chinnasamy (21633527)

    Published 2025
    “…This framework integrates a novel biologically inspired optimization algorithm, the Indian Millipede Optimization Algorithm (IMOA), for effective feature selection. …”
  5. 165

    Bayesian sequential design for sensitivity experiments with hybrid responses by Yuxia Liu (1779592)

    Published 2023
    “…<p>In experimental design, a common problem seen in practice is when the result includes one binary response and multiple continuous responses. …”
  6. 166

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports by Olivier Q. Groot (9370461)

    Published 2020
    “…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…”
  7. 167

    Psoas muscle CT radiomics-based machine learning models to predict response to infliximab in patients with Crohn’s disease by Zhuoyan Chen (12193358)

    Published 2025
    “…Twenty differential radiomics features were selected for integration into the ML models. All models demonstrated strong predictive performance in the validation cohort, with a mean area under the curve of 0.849. …”
  8. 168

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx by Yuhong Huang (115702)

    Published 2021
    “…We applied several feature selection strategies including the least absolute shrinkage and selection operator (LASSO), and recursive feature elimination (RFE), the maximum relevance minimum redundancy (mRMR), Boruta and Pearson correlation analysis, to select the most optimal features. We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …”
  9. 169

    Data Sheet 1_Detection of litchi fruit maturity states based on unmanned aerial vehicle remote sensing and improved YOLOv8 model.docx by Changjiang Liang (21099887)

    Published 2025
    “…The YOLOv8-FPDW model integrated FasterNet, ParNetAttention, DADet, and Wiou modules, achieving a mean average precision (mAP) of 87.7%. …”
  10. 170

    Supplementary Material 8 by Nishitha R Kumar (19750617)

    Published 2025
    “…</p><h4><b>10 Supervised machine learning classifiers for </b><b><i>E.coli</i></b><b> genome analysis:</b></h4><ol><li><b>Logistic regression (LR): </b> A simple yet effective statistical model for binary classification, such as predicting antibiotic resistance or susceptibility in <i>E. coli</i>.…”
  11. 171

    Variable Selection with Multiply-Imputed Datasets: Choosing Between Stacked and Grouped Methods by Jiacong Du (12035845)

    Published 2022
    “…Building on existing work, we (i) derive and implement efficient cyclic coordinate descent and majorization-minimization optimization algorithms for continuous and binary outcome data, (ii) incorporate adaptive shrinkage penalties, (iii) compare these methods through simulation, and (iv) develop an R package <i>miselect</i>. …”
  12. 172

    An intelligent decision-making system for embryo transfer in reproductive technology: a machine learning-based approach by Sanaa Badr (20628838)

    Published 2025
    “…The RF model achieved a slightly lower average accuracy (88.89%), which demonstrated the lowest variability. …”
  13. 173
  14. 174

    Table 1_Heavy metal biomarkers and their impact on hearing loss risk: a machine learning framework analysis.docx by Ali Nabavi (21097424)

    Published 2025
    “…Multiple machine learning algorithms, including Random Forest, XGBoost, Gradient Boosting, Logistic Regression, CatBoost, and MLP, were optimized and evaluated. …”
  15. 175

    Data_Sheet_1_A Data-Driven Framework for Identifying Intensive Care Unit Admissions Colonized With Multidrug-Resistant Organisms.docx by Çaǧlar Çaǧlayan (12253934)

    Published 2022
    “…</p>Materials and Methods<p>Leveraging data from electronic healthcare records and a unique MDRO universal screening program, we developed a data-driven modeling framework to predict MRSA, VRE, and CRE colonization upon intensive care unit (ICU) admission, and identified the associated socio-demographic and clinical factors using logistic regression (LR), random forest (RF), and XGBoost algorithms. …”
  16. 176

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
  17. 177

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx by Massaine Bandeira e Sousa (7866242)

    Published 2024
    “…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …”
  18. 178

    Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png by Minjin Guo (22751300)

    Published 2025
    “…</p>Methods<p>To address these challenges, we propose a novel AI-driven framework that incorporates two key methodological innovations: CardioSpectra, a structured sparse inference model, and Risk-Stratified Exertional Embedding (RSEE), a domain-specific representation learning strategy. …”
  19. 179

    Active Learning Accelerated Discovery of Stable Iridium Oxide Polymorphs for the Oxygen Evolution Reaction by Raul A. Flores (2910539)

    Published 2020
    “…We emphasize that the proposed AL algorithm can be easily generalized to search for any binary metal oxide structure with a defined stoichiometry.…”
  20. 180

    Flowchart of the entire pipeline. by Andreas Denger (12111159)

    Published 2024
    “…Then, the protein feature generation algorithms described in our previous study [<a href="http://www.plosone.org/article/info:doi/10.1371/journal.pone.0315330#pone.0315330.ref022" target="_blank">22</a>] are applied to the data, and pairwise ML models are trained and evaluated (see Section Evaluation of pairwise machine learning models). …”