Showing 1 - 20 results of 82 for search '(( binary data required optimization algorithm ) OR ( binary rate based optimization algorithm ))*', query time: 0.62s Refine Results
  1. 1

    Proposed Algorithm. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  2. 2

    Comparisons between ADAM and NADAM optimizers. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  3. 3

    Normalized computation rate for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  4. 4
  5. 5

    DE algorithm flow. by Ling Zhao (111365)

    Published 2025
    “…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
  6. 6

    Test results of different algorithms. by Ling Zhao (111365)

    Published 2025
    “…In the experiments, optimization metrics such as kinematic optimization rate (calculated based on the shortest path and connectivity between functional areas), space utilization rate (calculated by the ratio of room area to total usable space), and functional fitness (based on the weighted sum of users’ subjective evaluations and functional matches) all perform well. …”
  7. 7

    MSE for ILSTM algorithm in binary classification. by Asmaa Ahmed Awad (16726315)

    Published 2023
    “…In this paper, a novel, and improved version of the Long Short-Term Memory (ILSTM) algorithm was proposed. The ILSTM is based on the novel integration of the chaotic butterfly optimization algorithm (CBOA) and particle swarm optimization (PSO) to improve the accuracy of the LSTM algorithm. …”
  8. 8
  9. 9
  10. 10

    An Example of a WPT-MEC Network. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  11. 11

    Related Work Summary. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  12. 12

    Simulation parameters. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  13. 13

    Training losses for N = 10. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  14. 14

    Summary of Notations Used in this paper. by Hend Bayoumi (22693738)

    Published 2025
    “…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
  15. 15
  16. 16
  17. 17
  18. 18

    Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things by Ashok Kumar K (21441108)

    Published 2025
    “…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
  19. 19
  20. 20