Search alternatives:
required optimization » guided optimization (Expand Search), resource optimization (Expand Search), feature optimization (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
data required » data acquired (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
required optimization » guided optimization (Expand Search), resource optimization (Expand Search), feature optimization (Expand Search)
models optimization » model optimization (Expand Search), process optimization (Expand Search), wolf optimization (Expand Search)
data required » data acquired (Expand Search)
primary data » primary care (Expand Search)
binary data » dietary data (Expand Search)
-
161
-
162
-
163
-
164
Workflow of COP30DEM deviation correction model.
Published 2024“…In the hybrid model of this paper, the choice was made to use the Densenet architecture of CNN models with LightGBM as the primary model. …”
-
165
-
166
-
167
Performance metrics for BrC.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
168
Proposed methodology.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
169
Loss vs. Epoch.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
170
Sample images from the BreakHis dataset.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
171
Accuracy vs. Epoch.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
172
S1 Dataset -
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
173
CSCO’s flowchart.
Published 2024“…Consequently, the prediction of BrC depends critically on the quick and precise processing of imaging data. The primary reason deep learning models are used in breast cancer detection is that they can produce findings more quickly and accurately than current machine learning-based techniques. …”
-
174
Set of variables VS model performance.
Published 2025“…A combination of four machine learning algorithms (XGBoost、Logistic Regression、Random Forest、AdaBoost) was employed to predict NPM recurrence, and the model with the highest Area Under the Curve (AUC) in the test set was selected as the best model. …”
-
175
-
176
-
177
SPAM-XAI compared with previous models.
Published 2024“…However, SDP faces challenges like imbalanced data, high-dimensional features, model overfitting, and outliers. …”
-
178
Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish)
Published 2024“…</li></ul><p dir="ltr"><b>File Structure</b></p><p dir="ltr">The code generates and saves:</p><ul><li>Weights of the trained model (.h5)</li><li>Configured tokenizer</li><li>Training history in CSV</li><li>Requirements file</li></ul><p dir="ltr"><b>Important Notes</b></p><ul><li>The model excludes category 2 during training</li><li>Implements transfer learning from a pre-trained model for binary hate detection</li><li>Includes early stopping callbacks to prevent overfitting</li><li>Uses class weighting to handle category imbalances</li></ul><p dir="ltr">The process of creating this algorithm is explained in the technical report located at: Blanco-Valencia, X., De Gregorio-Vicente, O., Ruiz Iniesta, A., & Said-Hung, E. (2025). …”
-
179
Supplementary file 1_Development of a venous thromboembolism risk prediction model for patients with primary membranous nephropathy based on machine learning.docx
Published 2025“…Objective<p>This study utilizes real-world data from primary membranous nephropathy (PMN) patients to preliminarily develop a venous thromboembolism (VTE) risk prediction model with machine learning. …”
-
180