Search alternatives:
resource optimization » resource utilization (Expand Search), resource utilisation (Expand Search), resource limitations (Expand Search)
based optimization » whale optimization (Expand Search)
data resource » data resources (Expand Search), data source (Expand Search), water resource (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
base based » case based (Expand Search), blame based (Expand Search), made based (Expand Search)
resource optimization » resource utilization (Expand Search), resource utilisation (Expand Search), resource limitations (Expand Search)
based optimization » whale optimization (Expand Search)
data resource » data resources (Expand Search), data source (Expand Search), water resource (Expand Search)
binary data » primary data (Expand Search), dietary data (Expand Search)
binary base » binary mask (Expand Search), ciliary base (Expand Search), binary image (Expand Search)
base based » case based (Expand Search), blame based (Expand Search), made based (Expand Search)
-
1
Proposed Algorithm.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
2
-
3
-
4
-
5
Comparisons between ADAM and NADAM optimizers.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
6
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
Published 2025“…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …”
-
7
-
8
-
9
-
10
-
11
Secure MANET routing with blockchain-enhanced latent encoder coupled GANs and BEPO optimization
Published 2025“…To tackle these challenges, this paper proposes the Blockchain Based Trusted Distributed Routing Scheme for MANET using Latent Encoder Coupled Generative Adversarial Network Optimized with Binary Emperor Penguin Optimizer (LEGAN-BEPO-BCMANET). …”
-
12
-
13
-
14
An Example of a WPT-MEC Network.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
15
Related Work Summary.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
16
Simulation parameters.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
17
Training losses for N = 10.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
18
Normalized computation rate for N = 10.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
19
Summary of Notations Used in this paper.
Published 2025“…EHRL integrates Reinforcement Learning (RL) with Deep Neural Networks (DNNs) to dynamically optimize binary offloading decisions, which in turn obviates the requirement for manually labeled training data and thus avoids the need for solving complex optimization problems repeatedly. …”
-
20